مقاله Content Based Mammogram Image Retrieval Based On The Multiclass Visual Problem

 مقاله Content Based Mammogram Image Retrieval Based On The Multiclass Visual Problem

… دانلود …

مقاله Content Based Mammogram Image Retrieval Based On The Multiclass Visual Problem دارای 4 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله Content Based Mammogram Image Retrieval Based On The Multiclass Visual Problem کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله Content Based Mammogram Image Retrieval Based On The Multiclass Visual Problem،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله Content Based Mammogram Image Retrieval Based On The Multiclass Visual Problem :

سال انتشار: 1389

محل انتشار: هفدهمین کنفرانس مهندسی پزشکی ایران

تعداد صفحات: 4

نویسنده(ها):

Farzad Siyahiani – Biomedical Signal and Image Processing Lab (BiSIPL), School of Electrical Engineering, Sharif University of Technology
Emad Fatemizadeh – Biomedical Signal and Image Processing Lab (BiSIPL), School of Electrical Engineering, Sharif University ofTechnology

چکیده:

Since expertise elicited from past resolved cases plays an important role in medical application and images acquired from various cases have a great contribution to diagnosis of the abnormalities, Content based medical image retrieval has become an active research area for many scientists, In this article we proposed a new framework to retrieve visually similar images from a large database, in which visual relevanceis regarded as much as the semantic category similarity, we used optimized wavelet transform as the multi-resolution analysis of the images and extracted various statistical SGLDM features from different resolutions then after reducing feature space we used error correcting codes in order to untwist the existing multiclass visual problem introduced in preceding parts of the article, we implemented proposed algorithm on the 1000 mammograms provided by the DDSM database which consist of 2500 studies and their annotations provided by specialists.

نوشته شده در دسته‌بندی نشده توسط admin. افزودن پیوند یکتا به علاقمندی‌ها.