مقاله Comparison between Backpropagation, Elman and Radial Basis Function (RBF) networks in modeling of Tehran refinery hydrocracking unit

 مقاله Comparison between Backpropagation, Elman and Radial Basis Function (RBF) networks in modeling of Tehran refinery hydrocracking unit

… دانلود …

مقاله Comparison between Backpropagation, Elman and Radial Basis Function (RBF) networks in modeling of Tehran refinery hydrocracking unit دارای 6 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله Comparison between Backpropagation, Elman and Radial Basis Function (RBF) networks in modeling of Tehran refinery hydrocracking unit کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله Comparison between Backpropagation, Elman and Radial Basis Function (RBF) networks in modeling of Tehran refinery hydrocracking unit،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله Comparison between Backpropagation, Elman and Radial Basis Function (RBF) networks in modeling of Tehran refinery hydrocracking unit :

سال انتشار: 1388

محل انتشار: ششمین کنگره بین المللی مهندسی شیمی

تعداد صفحات: 6

نویسنده(ها):

Kh Sharifi – Department of Chemical Engineering, Iran University of Science and Technology, Narmak Street, Tehran, Iran
M Bahmani – Department of Chemistry, Applied Chemistry Group, Tarbiat Moalem University, Dr. Mofatteh Street, Tehran, Iran
M Shirvani – Department of Chemical Engineering, Iran University of Science and Technology, Narmak Street, Tehran, Iran

چکیده:

Different Artificial Neural Networks for modeling the hydrocracking process were utilized and their abilities were compared. The input–output data for the training and simulation phases of the networks were obtained from the Tehran refinery ISOMAX unit. Backpropagation, Elman and Radial Basis Function (RBF) networks were used for modeling and simulation of the hydrocracking unit. For each network model several architectures were studied and the best parameters for each network were obtained. The trained networks predict the yields of products of the ISOMAX unit(diesel, kerosene, light naphtha and heavy naphtha) with good accuracy. The residual error (root mean squared difference), coefficient correlation and run time, are three criteria that have been used for selection of the best network for modeling the hydrocracking unit.

نوشته شده در دسته‌بندی نشده توسط admin. افزودن پیوند یکتا به علاقمندی‌ها.