مقاله A Neural Network-Based Training Scheme for Probabilistic Support Vector Machine

 مقاله A Neural Network-Based Training Scheme for Probabilistic Support Vector Machine

… دانلود …

مقاله A Neural Network-Based Training Scheme for Probabilistic Support Vector Machine دارای 7 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله A Neural Network-Based Training Scheme for Probabilistic Support Vector Machine کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله A Neural Network-Based Training Scheme for Probabilistic Support Vector Machine،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله A Neural Network-Based Training Scheme for Probabilistic Support Vector Machine :

سال انتشار: 1386

محل انتشار: سومین کنفرانس بین المللی فناوری اطلاعات و دانش

تعداد صفحات: 7

نویسنده(ها):

Sohrab Effati – Department of Mathematics Tarbiat Moallem University of Sabzevar Sabzevar, Iran
Hadi Sadoghi Yazdi – Engineering Department Tarbiat Moallem University of Sabzevar Sabzevar, Iran
Zahra Saberi – Department of Mathematics Tarbiat Moallem University of Sabzevar Sabzevar, Iran

چکیده:

In this paper a new scheme is proposed for training of the support vector machine (SVM) with probabilistic constraints. In the SVM, a pattern
recognition problem is converted to a constraint quadratic programming. Each constraint is related to a training sample thereupon noisy data is caused appearance of incorrect support vector. Probabilistic constraints admit presence probably of samples in each class is applied based on a distribution function for determining suitable support vectors. In this way, it is possible noisy samples have low effect for finding support vectors. In the proposed method, SVM with the probabilistic constraints is converted to form of neural network model which can be described by the nonlinear dynamical system. A set of differential equations are defined for modeling of this dynamic and converges to optimal solution for the SVM with the probabilistic constraints. Another feature of the proposed method is solving both the primal and dual problem of SVM.xperimental results show the capability of the proposed method relative to conventional SVM.

نوشته شده در دسته‌بندی نشده توسط admin. افزودن پیوند یکتا به علاقمندی‌ها.